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Theories of phase behaviour and phase transitions
in liquid crystals

By PEprRO TARAZONA

Departamento de Fisica de la Materia Condensada (C-XII), Universidad Auténoma
de Madrid, E-28049 Madrid, Spain

This paper reviews the microscopic statistical theories of liquid crystals for simple
molecular systems. Starting from the early works of Onsager, Maier and Saupe to the
recent advances and trends for the future. Particular attention is paid to the theories
for systems of hard body molecules, which should play a central role in the
development of the theories, as the hard spheres model was crucial in the theory of
simple liquids.

1. Introduction

The aim of a molecular statistical theory of liquid crystals is the prediction of the
phase behaviour and phase transitions from the molecular interactions. We are still
far away from this goal, the beautiful variety of phases and behaviours observed in
these systems and the complexity of their molecular interactions represent a double
challenge to the theoretician. A first step is to extract from the molecular structure
a simplified molecular model keeping only those aspects which are thought to be
relevant for the macroscopic behaviour. The molecular model should then be
analysed with the tools of the statistical physics which, for any non-trivial model,
requires the development of workable approximations.

A useful perspective to the progress in the theory of liquid crystals is given by the
theory of simple systems like argon, with a phase diagram composed of only three
phases: solid, liquid and vapour. The relevant aspects of the atomic interaction were
identified at the end of the last century by van der Waals as a short range core
repulsion and the attraction, due to dispersion forces, at longer range. The
qualitative aspects of the liquid-vapour coexistence were reproduced by van der
Waals’s approach with an excluded volume treatment of the hard cores and the mean
field approximation for the attractive interactions. The development of theories
capable of quantitatively predictions required a refined model for the interactions (as
the Lennard—-Jones potential) and the development, over the 60s and the 70s, of the
theory of simple liquids, built around the simplified model of hard spheres as
reference system. The critical region presented a separate and very interesting
problem which was solved with the innovative concepts of scaling and the techniques
of the renormalization group. The theoretical understanding of the liquid—solid
coexistence came even later. The description of the crystal at low temperature, given
by the theory of solid state physics, was difficult to fit in the framework of the liquid
state theory. The solution of this problem came only in the last decade, with the
application of the density functional formalism to describe the crystal as a self-
structured fluid. In the last few years we have got density functional approximations
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capable of quantitative predictions for the freezing of hard spheres, and we are just
now getting close to a good theoretical understanding of the full phase diagram of
argon.

A glance to the molecular structure of any typical liquid crystal is enough to
understand why the theory of liquid crystals is at least 30 years behind the theory
of simple fluids. The first efforts by Onsager (1949) and Maier & Saupe (1958, 1960)
were directed to the nematic, as the simplest liquid crystal phase. The relevant
aspect of the interactions responsible of this phase was identified as the molecular
anisotropy. Onsager explored the effects of anisotropy in the hard core repulsion,
with an excluded volume approximation. He obtained qualitative agreement with
the behaviour of lyotropic liquid crystals (those studied experimentally by changing
the concentrations in a mixture), although the theory was far from quantitative
accuracy. Maier & Saupe were involved in experiments with thermotropic liquid
crystals (pure substances studied by changing the temperature) and they found their
theory on the anisotropy of soft dispersion interactions, treated in a mean field
approximation inspired in Weiss’s theory of ferromagnetism. The quantitative
accuracy of Maier—Saupe theory, although limited, was superior to that of Onsager,
and the mean field treatment of soft interactions was much easier to extend to other
liquid crystal phases, like smectics, than the packinﬂ effects of anisotropic hard cores.
The theoretical development, from these pioneering works and during the past two
decades, has been based on the achievements of the theory of simple fluids and on
advent of computer simulations, as an intermediate step between theory and
experiments. The theory of simple fluids made clear that the correlation structure in
a liquid is mainly determined by the core repulsions. Any theory aiming for
quantitative accuracy should include this effect, and that is why the hard spheres
model became the basic reference system to describe simple fluids. The same should
apply to the correlation structure, both of positions and molecular orientations, in
molecular fluids and liquid crystals. Any attempt to include the effects of the soft
dispersion interactions, beyond the pure mean field approximation, should include
the anisotropy of the core repulsions. Thus, the study of systems with pure hard core
interactions has become very important. These models should be the reference
systems used to describe other, more realistic, with soft dispersion and electrostatic
interactions. Even if the soft interactions are the dominating effect in the formation
of the nematic, as postulated by Maier & Saupe, an accurate theory will only be
possible with a good description of a hard core reference system.

Moreover, our increasing knowledge about the crystallization of simple liquids
indicates that this transition is dominated by the packing effects of the hard cores,
rather than by the soft attractive interactions. If the liquid crystals are regarded as
‘mesophases’ between the liquid and the solid, it will be surprising if the packing of
the hard cores were not an important factor in the determination of the phase
diagram. The phase diagram of a model with pure hard core interactions does not
depend on the temperature, but this should not be taken as an indication of falling
wide off the mark of a thermotropic liquid crystal. The use of temperature as the
control parameter in experiments at constant pressure is much more convenient, for
practical reasons, than the use of pressure as the control parameter, but it does not
imply that the most relevant interaction is not the core repulsion. The liquid—solid
coexistence in a Lennard—Jones system is mainly determined by the core packing,
the attractive interactions produce only a weak dependence of the coexisting
densities with the temperature. It is precisely this weak dependence what makes
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possible for the experimentalist to study the crystallization of a simple fluid or the
fusion of a solid as temperature induced phenomena, but this should not be taken as
a proof for the preeminence of the attractive interactions over the core repulsions in
the problem.

It is hardly possible to overemphasize the role of the computer simulations in the
development of the theory of liquid crystals. In the direct comparison of a theoretical
result and the experimental data we are always uncertain about the source of the
discrepancies. They may be the effect of the unavoidable approximations made in the
statistical theory, or they may come from the difference between the real molecular
interactions and the necessarily simplified model hamiltonian used in the theory. The
computer simulations allow us to check the accuracy of the theoretical approaches
without any incertitude about the interactions. On the other hand, they may be used
to compare the behaviour of simplified models with that of real systems. Again from
the perspective given by the theory of simple fluids, we see that theoretical progress
will be next to impossible without the computer simulations.

The rest of this chapter gives a review of the main microscopic theories of liquid
crystals, from the classical work of Onsager to the recent advances towards
quantitative accuracy and the perspectives for the future. Section 2 is dedicated to
the nematic phase and the transition from the isotropic liquid. Liquid crystals with
spatial order, smectics and columnar phases, are reviewed in §3. The chapter ends
with a general discussion over the present status and perspectives of the theory. The
review is restricted to the microscopic statistical theories of bulk equilibrium phases,
it is not an extensive account of the existing approaches but rather an introduction
to the tendencies in a field of very active research. The subjects of dynamics,
interfaces, defects and textures are leaved out entirely. The reader is directed
towards the existing texts, in particular the book by de Gennes (1974), already a
classic in the field, and the excellent and more recent one by Vertogen & de Jeu
(1988). The review article by Frenkel (1991) is also recommended for the most recent
advances.

2. Theories of nematics

The difference between a nematic liquid crystal and a molecular liquid is the long
range order in the orientation of the molecular axes, described by a set of angles
represented here as w. In the simplest case, the order appears only in the orientation
of one molecular axis, the ‘main’ axis, which is represented by the unit vector a, with
cartesian components a, (@ = x,y,z). In absence of polar order the configurations
with orientations @ and —a have the same probability and the statistical average of
the vector a vanishes, <a> = 0. The order parameter is the symmetric traceless
tensor, S, = {a,a;) —30,, with the usual Kronecker tensor §,;and «, f = 2,y,2. In
the isotropic liquid phase Wlthout long range order in the molecular orientations,
S, = 0. In the usual uniaxial nematic liquid crystals the tensor S,, may be expressed
as S, = S(n,n;—3d,4), in terms of the components of a unit vector n, called the
nematic director, which represents the direction of mean orientation for the main
molecular axis. The scalar nematic order parameter S measures the degree of
orientational order. Distortions of the nematic director correspond to changes of n
over macroscopic scales and are responsible for some of the most characteristic
properties of liquid crystals. However, in the development of a microscopic
(molecular) theory of nematics the director n is fixed (say along the Z axis) and the
system is uniaxial if the distribution function of molecular orientations, f(w), depends
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only on the angle § between the vectors a and n. The nematic order parameter S is
the mean value of the second order Legendre polynomial,

8 = (P,(cos () = jdw £(6) P,(cos () = 2nfd0 sin 6f(0) 43 cos? (6)—1]. (1)
0

The isotropic liquid, without orientational order, corresponds to S = 0 and a system
of parallel molecules, with perfect orientational order, has S = 1. A molecular theory
of nematic liquid crystals and of the phase transition from the isotropic liquid to the
nematic has to evaluate the statistical average over the molecular orientations in (1)
from a microscopic model of molecular interactions and find spontaneous order,
S # 0, in the nematic.

In his pioneering work on liquid crystals, Onsager (1949) studied a molecular
model with pure hard core repulsions. This leaves out from the beginning the
temperature as a relevant parameter, but it focuses the problem in the effects of
packing which may be studied in terms of the molecular geometry. The obvious
advantage is that the molecular model may be compared with the real molecules in
a quantitative (although simplified) way. For elongated molecules Onsager proposed
a hard-rod model, with length L and diameter D which should (roughly) reproduce
the molecular shape. The statistical theory is then developed as a virial expansion of
the free energy, F', which is written as a functional of the orientational distribution
flw). The theory includes the exact free energy of a system with non-interactive
molecules, the molecular ideal gas F [ f(w)]. The molecular interactions are included
only through their first contribution, which is proportional to the excluded volume
Vop(w, ") between a pair of hard body molecules with orientations w and w’:

F F,
Wil Lale) 49, [ a0 dor )16 Koo, @

where p, is the density of molecules, assumed uniform over the system. The second
term in (2) is the driving force for the formation of a nematic: the exclude volume
between two hard rods or length L and diameter D, in the limit of L > D (i.e.

neglecting the end effects) is
Vie(w, ") = 2L*D |sin ], (3)

in terms of the angle y between the two rod axes (cos y = a-a’). This excluded volume
is minimized for parallel orientations favouring the nematic order. The fully
disordered distribution of molecular orientations, f(w) = im, is favoured by the ideal

gas free energy: F
%(%ﬂ - jd"’f (w) In [4n f(w) p, 4*] =1, @)

where A is the usual thermal wavelength. At low density the ideal gas contribution
is dominant and the system is an isotropic liquid. At higher density the packing
efficiency is more important and the nematic phase becomes stable. The phase
transition was searched with a parametrized distribution function and found, in
terms of the packing fraction y = nD?Lp,/4, at 5, = 3.3D/L of the isotropic liquid
and 7y = 4.5D /L for the nematic. The predicted phase transition has strong first
order character; the density difference between the coexisting phases is large and the
order parameter jumps from § = 0 in the isotropic liquid to S = 0.84 in the coexisting
nematic. The nematic order observed in real liquid crystals at the transition point is
much lower, § ~ 0.3, indicating a much weaker first order transition. An improved

Phil. Trans. R. Soc. Lond. A (1993)
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calculation by Lee & Meyer (1986), with the same free energy (2) and the full
numerical minimization with respect to f(w), gives §=0.79 still far from the
experimental data.

The approach of Maier & Saupe (1958, 1960) was directly inspired in Weiss’s
theory of ferromagnetism. The theory focuses on the role of temperature in a model
of thermotropic liquid crystals, with a phase transition from the isotropic liquid (at
T > T;y) to the nematic (at 7' < T},) without change in the density, p,. The nematic
order is assumed to be induced by a soft anisotropic intermolecular potential,
¢(r—r’,w,0’), which may be treated in a pure mean field approximation, integrating
it over the relative positions of the molecular centres, r—r’, to given an effective
potential @(w,w’). The free energy per molecule is written as

Flf(w)] _ Fqlf(@)]
N N

iy f dod’ f(o) f(o) B(, o). )

The phase transition comes from the balance between the molecular ideal gas
entropy and the soft molecular interactions. The problem to get a truly microscopic
theory was the lack of knowledge about these interactions in real molecules. The
macroscopic symmetry of nematic liquid crystals impose symmetry requirements on
D(w,w’). Maier & Saupe suggested van der Waals like, induced dipoles interactions,
with anisotropic molecular polarizability. Thus the angular dependence of the
intermolecular potential was modelled by

D(w,w') = —JF,(cos y) (6)

in terms of the angle y between the main axis of the two molecules and the Legendre
polynomial of order 2. This is the smoothest function of the molecular orientations
with the appropriate symmetry. The coefficient J of this anisotropic interaction
should reflect the anisotropy of the molecular polarizability, but in practice it was
taken as an empirical parameter to fit the experimental transition temperature, 7T} .
The theory provided a prediction for the nematic order parameter below the
transition temperature which was in remarkably good agreement with the
experimental data. Other theoretical predictions, as the latent heat at the transition,
were not so successful but altogether the theory of Maier & Saupe looked much closer
to the real liquid crystals than Onsager’s approach. This double start polarized
somehow the development of microscopic theories of nematics in a ‘hard-cores’
versus ‘soft-interactions’ disjunctive. Sometimes the two approaches were regarded
as separate theories of lyotropic and thermotropic liquid crystals respectively,
although the separation seems to reflect more the ‘experimental convenience’ than
a ‘fundamental difference’: most of the work is done at constant (atmospheric)
pressure, so for pure systems the temperature is the practical control parameter and
they are ‘thermotropic’ liquid crystals. For mixtures the relative concentration of
each component may be used as the control parameter, at constant temperature, and
they are considered ‘lyotropic’. From the theoretical point of view the iso-
tropic—nematic transition line in the concentration-temperature phase diagram may
be crossed in different directions, and some of these directions may be easier to
explore in experiments, but the essence of the transition is the same. Within the
theoretical framework developed in the last decades the approaches of Onsager and
of Majer & Saupe may be cast in the common form of a ‘generalized mean-field’

Phil. Trans. R. Soc. Lond. A (1993)
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theory (Somoza & Tarazona 1992), with the free energy, as a functional of the
distribution of molecular orientations, given by

i =P o 1y i ) [dwaot s Koo, )

NET NET

where ¢ is the contribution from the molecular interactions independent of the
molecular orientations. The phase transition from the isotropic liquid to the nematic
liquid crystal results from the balance between the ideal molecular gas free energy,
F,, and the contribution from the molecular interactions through the integrals over
o and o’. The kernel K(w,w’) reflects the nature of the interactions and may be
normalized to unity, extracting all the dependence on temperature and density into
the ‘control parameter’, A(p,, 7). In the theory of Maier & Saupe A ~ p,/7T and the
kernel K represents the anisotropic intermolecular potential by (6). In Onsager’s
approach A ~ p, and the kernel is the excluded volume between hard rods (3). If the
phase transition between the isotropic liquid and the nematic is searched at constant
value of the ‘control parameter’ A (as in the original work of Maier & Saupe), the
nematic order parameter at the transition depends only on the kernel K(w, »’). In this
light, the good agreement with experimental data of Maier—Saupe prediction for S,
compared to the apparent failure of Onsager’s approach, is surprising. The later is
based in a sensible (although simplified) microscopic model for the molecular
interactions, while in the former the kernel is taken as the ‘smoothest’ function with
the adequate symmetry, mainly to simplify the analysis of the model, with little
physical justification.

Improvements over the original work of Maier & Saupe require the microscopic
modelling of the molecular interactions. Any approach including, at least partially,
the molecular correlations has to depend on the coupling between orientations and
positions, this requires a model for the molecular interaction potential, ¢p(r—#', w, »’),
and not only for its integral over r —#" as in (2.6). Plausible model for this potential
should include a repulsive interactions produced by the overlap of the molecular
cores. With the typical values of the density in liquid erystals, the packing effects of
these cores should give an important contribution to the free energy, which cannot
be described in a pure mean field approach like (2.5). Semi-empirical equations of
state may include both the soft interactions, in mean field approximation, and the
hard cores packing, as in the van der Waals equation of state for simple fluids.
However, the empirical parameters used to fit the experimental data have a very
poor correlation with the predictions from the molecular structure (Vertogen & de
Jeu 1988; Flapper et al. 1981). The difficulties arise from both the very complex
structure of the liquid crystal molecules (including flexible tails and other elements
far from the simplified theoretical models) and from the crude approximations used
in the statistical average of even the simplest hard rod model. The first difficulty may
be bridged by computer simulations of systems with simple molecular interactions,
like the potential proposed by Gay & Berne (1981), to provide the ‘experimental’
data for a theoretically treatable model. The second difficulty implies that, before we
may construct theories with quantitative predicting power for a liquid crystal with
soft interactions, we have to develop the theoretical treatment of the hard core
models, much as the theoretical treatment of simple liquids followed the
understanding of the hard sphere fluid (see Hansen & McDonald 1986).

Telo da Gama (1984) studied a microscopic model for the soft molecular
interactions with isotropic hard cores (i.e. hard spheres) to represent the packing

Phil. Trans. R. Soc. Lond. A (1993)
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contribution to the free energy. The model, although still far from realistic, includes
the dependence of the free energy on the density and the coexisting isotropic liquid
and nematic liquid crystal at the same pressure, rather than at the same density. It
also includes the coexistence between the isotropic liquid and a vapour, so that the
usual experimental conditions for thermotropic liquid crystals may be mimicked by
the phase diagram along the vapour—liquid coexistence line. The temperature for the
transition from the isotropic liquid to the nematic corresponds to the triple point
temperature. Within the general description (2.7), the control parameter A is a
nonlinear function of the density, and the effect is to increase the first order character
of the phase transition. The nematic order parameter at coexistence depends on the
parameters of the potential, but it raises well over the original predictions of Maier
& Saupe and makes the comparison with experiments significantly worse. The model
has been applied to study the properties associated to inhomogeneous spatial
distributions, the structure of liquid crystal interfaces (Telo da Gama 1984a;
Thurtell et al. 1985).

The theoretical approaches for hard body molecular models beyond Onsager’s
pioneering work, followed the advances in the understanding of the hard sphere
system, in the theory of simple liquids. Onsager’s approach is a virial expansion
truncated after the second order term. The validity of such truncation is doubtful,
even in the limit of very long rods (L > D), when the phase transition occurs at very
low packing fractions (proportional to D/L), the effect of higher order coefficients
may be important (Vertogen & de Jeu 1988). Higher order terms in the virial
expansion for the isotropic liquid, were calculated for asymmetric hard bodies with
simple geometry (sphero-cylinders and ellipsoids being the most popular shapes), but
the virial expansion for the nematic phase requires the averages of the overlapping
excluded volumes (in terms of the integrals of Mayer functions) with anisotropic
distribution f(w) of the molecular orientations, which are difficult to obtain for higher
orders. The most successful approaches are based on approximated resumations
which give the free energy as a functional of the orientational distribution f(w) with
a form similar to (3). The ‘scaled particle approximation’ of Cotter (1974, 1976), the
‘y-expansion’ of Barboy & Gelbart (1979, 1980) and the ‘decoupling approximation’,
first proposed by Wulf (1977) and Parsons (1979) and later presented in equivalent
forms by other authors (Lee 1987 ; Baus et al. 1987), are probably the most successful
theory for nematic liquid crystals of hard body molecules. In the later, the free
energy, as a functional of the molecular orientation distribution f(w), is written in
terms of the excluded volume between the hard body molecules, W ,(w, '), and that
of a ‘reference’ hard spheres system, Vi,

r F ‘ ’
i = Pl At [ oo o) ok, )

where Ay, (p) is the excess over the ideal gas for the free energy per molecule in the
reference hard sphere system. This functional form reproduces Onsager’s theory if
this function is approximated by its first contribution in a density expansion,

Awhs(p) = %p Vhs +0(P2)

Thus (2.8) may be interpreted (Somoza & Tarazona 1989) as an approximated
resumation of the virial expansion at infinite order, with the virial coefficients for the
hard body system, B}*, assumed to scale with those of hard spheres, B}, as

B = (BY*/B)B}* i=23,.... )
Phil. Trans. R. Soc. Lond. A (1993)
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In this way we may use the equation of state for a hard sphere fluid (known in very
good approximations), to get the free energy of hard body systems. The volume of
the reference hard spheres is chosen to optimize the accuracy of the scaling relation
(2.9). In the isotropic liquid, f(w) = im, the best empirical choice seems to be to take
spheres with the same volume as the hard body molecules, so that the packing
fraction in the real and reference systems is the same. However, in a nematic phase
the results of this approximation may be improved by other judicious choice for the
reference system, depending on the orientation distribution f(w).

Recently, Tjipto-Margo & Evans (1990) have got the virial coefficient B, for hard
ellipsoids. That allowed them to extend Onsager’s approach exactly to the next order
and to include this information in approximated resumations. The development of
all these theoretical approaches with quantitative accuracy was made possible by the
advent of computer simulations to provide the ‘experimental’ data for hard body
systems, with different molecular shapes, to contrast the results of the theoretical
approximations. One of the points clarified by computer simulations was that the
high value of the nematic order parameter at the isotropic-nematic phase transition
found in Onsager’s approach, was only a slight overestimation of the real behaviour
of simple hard body systems (Baus et al. 1987). The discrepancy with experimental
data seems to be due mainly to the strong asymmetry of real molecules contrasted
with simple geometrical forms assumed in the theoretical works. The study, within
the decoupling approximation, of hard bodies with polar and biaxial asymmetry
show that the first order character of the transition is strongly reduced (Barboy &
Gelbart 1980; Holyst & Poniewiersky 19896 ; Somoza & Tarazona 1992). This offers
a possible explanation for the surprising agreement of Maier—Saupe results with the
experimental data commented above. The interaction potential between real
molecules is a very complex function of the molecular orientations, but the effective
kernel, as a function of main molecular axis orientations, after integration over all
the other degrees of freedom in w, will produce a relatively smooth function. Thus,
that the kernel in (3) may be closer to the empirical choice of Maier—Saupe (2.6) than
to the microscopic models of very symmetric hard bodies.

Somoza (1989) started the development of a perturbation theory for a system with
the Gay—Berne potential. Following the ideas used in the theory of simple fluids, the
interaction potential is split into a repulsive core and attractive interactions. The
former is described by a hard body molecule with the adequate shape, and the free
energy of this reference hard body system is obtained with the decoupling
approximation. The attractive interactions are introduced at first order perturbation
theory with, the pair distribution function of the reference fluid. The theory is still
at a preliminary stage, involving severe approximations at different levels. The
comparison with the computer simulations of de Miguel et al. (1991) show that,
although there is still plenty of room for improvements, we are in the way towards
a theory with good quantitative prediction power for these systems.

3. Smectics liquid crystals

Smectic liquid crystals present, besides the nematic order of the molecular
orientations, a layer structure with long range spatial order along one direction. At
least for the simpler cases, called smectics A and C, the structure within each layer
remains fluid without long range spatial order. The difference between the smectic A

Phil. Trans. R. Soc. Lond. A (1993)
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and the smectic C phases is the relative orientations of the nematic director, 7, and
the orientation of layers. In a smectic A liquid crystal the layers are perpendicular
to the average orientation of the main molecular axis, given by n, while in a smectic
C phase these two directions form a ‘tilt angle’ @. Other ‘exotic’ smectic phases
present some kind of two-dimensional order within the layers. Liquid crystals made
of oblate (disc-like) molecules may present a ‘columnar phase’, as a counterpart of
the smectics formed by the prolate (rod-like) molecules. In the columnar phase the
molecules organize themselves in a two-dimensional array of columns, so that the
system presents long range positional order in the two dimensions perpendicular to
the nematic director, but it is still fluid in the third direction, along the columns. All
these liquid crystals phases, with nematic order plus partial crystalline order, are
usually found between the isotropic liquid and the crystal phases, as intermediate
steps in the development of the full crystalline order. The theoretical study of these
phases is made in terms of the distribution function, p(r, ), for a molecule centred
at position r and with orientation w. The approximate forms for free energy, as a
functional of p(r, ), are minimized with respect to this distribution function with the
appropriate symmetry: p(r, w) = p(w) = p, f(f) corresponds to the uniaxial nematic
phase studied in the previous section, 6 being the angle between the main molecular
axis and the nematic director. Smectic A phases, with layers parallel to the XY plane
and with uniaxial symmetry, are described by p(z,0) = p(z+ A, 0) with a period A
along the Z direction. The fully order crystal phase will be represented by a function
p(r, w) with the periodicity over 7 on a crystal lattice in three dimensions.

(@) Theories of the smectic A phase

A theory of smectic A liquid crystals was constructed 20 years ago independently
by Kobayashi (1970) and McMillan (1971), as an extension of Maier—Saupe approach
for nematics. The idea was to describe the nematic order as the result of soft
anisotropic interactions which may be described within a pure mean field
approximation. The difference with the theory of nematics is that the intermolecular
potential has to be specified as a function of the molecular orientations and the
relative position of the molecular centres, @(r—r’, w, »’). Following the same strategy
as Maier & Saupe, this potential is included through an empirical function already
integrated on the variables which do not appear in the distribution function:

D(z—2,0,0") = —U(z—2") Py(cos 0) Py(cos &), (10)

which keeps the simplest possible dependence in the molecular orientation
(equivalent to (2.6)) to produce the nematic order. The function U(z) represents the
interaction between to parallel molecular layer at distance z. Thus, the mean field
approximation for the free energy, as a functional of p(z, 0) is:

Flples0)] = Balp(z, 00+ [ardr’ [dwdof 0—2,0,0) ple,0)ple'0) (1)
with the ideal molecular gas free energy given by the direct generalization of (4) to

inhomogeneous systems. This free energy is minimized within a variational family of
periodic functions, with period A, in z:

p(2,6) = pof(0)+2p,E p,(B) cos (2mnz/A). (12)
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The period A is fixed to represent empirically the length of the hard core along the
main molecular axis. This reduces the required knowledge of the function U(z) in (3.1)
to the Fourier components, U,, with wave number ¢ = 2nn/A, n=0,1,2,.... In
practice, only the terms with n = 0 and 1 were kept, so that the function interaction
potential was fully specified by two parameters U}, equivalent to JJ in (6), and U] as
the driving force of the smectic order. It is clear that the function U(z) represented
in this way cannot pretend to be a truly microscopic model for the molecular
interactions. The parameters A, U, and U, are regarded as empirical coefficients to fit
the experimental phase diagram and related to the molecular structure in a loose
qualitative way.

The ‘global phase diagram’ in this approach represents the transition temperature
for the isotropic liquid—nematic and the nematic-smectic A transitions, in reduced
units k7'/U,, as functions of the ratio o = U;/Uj. For values of o > 0.98 there is a
direct first order transition from the isotropic liquid to the smectic A liquid crystal,
without stable nematic phase at any temperature. For 0.98 < o < 0.7 there are two
first order phase transitions: from the isotropic liquid to the nematic and, at lower
temperature, from the nematic to the smectic A. If the parameter « is reduced below
0.7, the second transitions becomes of second order, and the density modulation
develops in a continuous way. This behaviour, including the existence of a tricritical
point where the nematic—smectic A transition changes its character, is in qualitative
agreement with the experimental data for homologous series of molecules, with the
same central aromatic core and different chain lengths. However, those properties
which may be compared directly with experimental data, like the ratio between the
two transition temperatures at the tricritical point, are far from quantitative
agreement. The real predictions of the theory are in fact little more than those of a
macroscopic Landau—de Gennes theory, with two order parameters, nematic and
smectic modulations, and the empirical free energy coupling them. It is not even
necessary to keep the nematic order as one of the coupled order parameters, in the
approach proposed by Meyer & Lubenski (1976), the molecules are assumed to be
parallel to each other, with perfect nematic order § =1, and the two order
parameters are the amplitudes of density modulations with periods A and 3A, so that
the free energy depends on the Fourier components U; and U, of the function U(z) in
(3.1) and U, is irrelevant because the perfect nematic order. The phase diagram is
qualitatively similar to that of Kobayashi-McMillan for the nematic to smectic A
transition, with the ratio U,/U, playing the role of the parameter o. Again there is a
tricritical point which separates the regions of first and second order phase
transitions. The perfect nematic order precludes the existence of the isotropic liquid
phase but it is not an obstacle to the existence of the nematic—smectic A phase
transition.

A perspective to the merits of these mean field theories for the smectic A phase is
given by the theory of crystallization of a simple fluid. The theory of Meyer &
Lubenski (1976) is very close to the theory of melting proposed by Kirkwood in 1951,
with the solid phase described by density modulations in the three dimensions of
space rather than only along the nematic director as in the smectic A. The major
drawback in the approach is that the lattice parameter for the crystal order is fixed,
in an empirical way, by the packing of the molecular repulsive cores, but only the
attractive interactions contribute to the free energy (in the mean field approxi-
mation) and below the transition temperature stabilize the density modulations
allowed by the core packing. Thus, the repulsive cores have a crucial role in the
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selection of the structural order but their contribution to the free energy is fully
neglected. In a simple system, like argon described by a Lennard-Jones potential,
the nature of the solid-liquid phase transition is qualitatively similar to that
observed in computer simulations of the hard sphere model, in which driving force
for the crystallization is the hard core packing contribution to the free energy. The
core packing should also provide a very important contribution to the free energy.
A truly microscopic theory for the crystallization of a simple fluid was only possible
in the last decade, with the advent of good density functional approximations for the
free energy, and the hard sphere model has played a central role (Tarazona 1985;
Curtin & Asheroft 1985; Baus 1991). Good theories for the crystallization of the
Lennard—Jones system have appeared very recently (Curtin & Ashcroft 1986;
Mederos et al. 1993), using a perturbation scheme from the hard spheres model
similar to that used in liquid theory.

The main difference between the crystallization of simple fluids and the problem
of liquid crystals was that the complexity of the molecular interactions for the later
cover up for the semiempirical approaches. The arrival of computer simulations have
changed this by providing ‘experimental’ data with relatively simple and perfectly
specified intermolecular potentials. The comparison of the simulation with the
predictions of the simple mean field theories makes clear that a truly microscopic
theory for these models has to include the free energy associated to the packing of
the repulsive cores. In this context, the models of hard body molecules are starting
to play a crucial role in the development of a theory for smectic liquid crystals.
They are very simplified models, in which the molecular interactions are described
by the molecular shape, which is much easier to compare with the real molecules.
Moreover, the computer simulations of Frenkel and coworkers (Stroobants ef al.
1986, 1987; Frenkel 1988; Frenkel et al. 1988) have shown that the phase
diagrams of these systems present a large variety of phases, depending in a subtle
way on the molecular shape. These simulations provide the touchstone to develop
theoretical approximations, using the experience gained with the density functional
theory of hard spheres and the theory of nematics. This is a very active field,
and it is still uncertain which approaches would become the most successful. What
follows is a brief account of the theory proposed by Somoza & Tarazona (1988, 1989),
which has been applied with relative success to several systems. Other related
approaches (Hosino et al. 1979; Mulder 1987; Wen & Meyer 1987; Holyst &
Poniewierski 1989 a; Poniewierski & Hotyst 1988) have been developed and applied
to several systems.

The approach is an extension of the decoupling approximation for systems with
inhomogeneous density distributions. The basic idea is to represent a system of hard
body molecules with the help of a ‘reference system’ made of parallel hard ellipsoids.
This reference system, with arbitrary length for the three main axis of the ellipsoids,
may be obtained by the anisotropic scaling of a hard sphere system. The scaling
cannot change the thermodynamic properties of the system, so that the equation of
state and the phase diagram is the same as for hard spheres, which we know quite
accurately. The only possible phases of the reference system are the hard sphere fluid,
mapped into a system of ellipsoids with perfect nematic order, and the hard spheres
crystal, mapped into the hard ellipsoid crystal. Smectic phases, with partial spatial
order cannot appear in the reference fluid, but they may be obtained when the
difference between the hard body molecules and the reference hard ellipsoid is taken
into account in the following way:
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F[p(z’ 6)] = Ed[p(ra 6)] + fdl’ deP(r, 0) Awphe(p(r))

N [dr [de’ p(r', 0 )My (r—V , o, w’)’
[dr’ [do’ py(r') Mpne(r—r')

where My, and M, are the Meyer functions for the hard body and the parallel hard
ellipsoids respectively. The integrals of these functions over the relative position of
the molecular centres are the excluded volumes as functions of the molecular
orientations. For the reference system of parallel hard ellipsoids the angular
variables do not appear in the Meyer function and p,(7) is the integral of p(r, w) over
the angular variables, i.e. the local density of molecules. The function Ay, is the
excess over the ideal gas free energy per molecule in the reference fluid, and it is
evaluated in a ‘weighted density’, p(r), as in the weighted density approximation
(wpa) for an inhomogeneous hard sphere system (Tarazona 1985; Curtin & Ashcroft
1985). In a system with homogeneous density, either the isotropic liquid or the
nematic liquid crystal, the free energy (3.4) reduces to that of the decoupling
approximation in (8). The formulation in terms of the Mayer function, instead of the
excluded volume provides in fact the coupling between the molecular orientations
and positions, required to construct a theory of smectics.

The choice of the reference parallel hard ellipsoids is made to include the main
effects of the hard body packing in the reference system, the lengths of the ellipsoid
principal axis should reflect both the shape and the degree of nematic order of the
hard body molecules. In the isotropic liquid the reference system has to be made of
spheres, to keep the macroscopic isotropy of the system, in a uniaxial nematic of
prolate molecules the parallel ellipsoids should have a long axis parallel to the
nematic director and shorter equal axis in the other two directions. For systems with
homogeneous density the only relevant parameter of the reference system is the
excluded volume, so that there is no difference between hard spheres and hard
ellipsoids of the same volume as in the previous section. However, in systems with
inhomogeneous density the anisotropy of the reference ellipsoids is very important;
it should control the free energy of density modulations and select the smectic period
A to be similar to the length of the main molecular axis.

Somoza & Tarazona (1989, 1990) explored several empirical recipes to select the
reference system in a system of parallel and free rotating hard molecules. In a system
of parallel hard sphero-cylinders (cylinders of length L and diameter D with semi-
spherical caps at the ends), the theory was compared with the computer simulations
of Stroobants et al. (1988). The phase diagram shows a continuous phase transition
from the nematic to the smectic. A phase at a critical packing fraction which depends
on the aspect ratio L /D. The results, in relatively good agreement with the computer
simulations, show that the approximation (3.4) includes the subtle effects of the
molecular shape in the macroscopic behaviour: the system of parallel hard sphero-
cylinders is not very different from the reference system of parallel hard ellipsoids,
but the difference is enough to stabilize the smectic A phase for the sphero-cylinders
and not for the ellipsoids.

The results for systems of free rotating hard sphero-cylinders are more sensitive to
the map into the reference system. The theories of Somoza & Tarazona (1990) and
of Poniewierski & Hotyst (1988) have been applied to the problem. In both cases
there is a stable smectic A phase, formed from the nematic if the aspect ratio is larger

(13)
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than L/D ~ 3. The nature of the transition is sensitive to the details of the theory.
For very long molecules the orientational degrees of freedom should be nearly frozen
and the theories predict a second order phase transition, as in the case of parallel
molecules. However, there is a strong discrepancy in the value of L/D at which the
transition changes order. There are computer simulations of the model for L/D = 5,
but the problem is still open.

The development of theoretical treatments for models with both soft attractions
and hard core repulsions, beyond the empirical mean field theories, is a subject of
very active interest. Mederos & Sullivan (1989) have developed a treatment with a
reference system of parallel hard ellipsoids plus soft attractive interactions of the
same type as in (10) and with some extra terms coupling the relative molecular
position and their orientations. The phase diagrams are explored in the tem-
perature—density plane and they may include isotropic liquid, nematic and smectic
A phases. The later only appears as a consequence of the attractive interactions, as
in the approach of Kobayaski & McMillan, but the reference system of parallels hard
ellipsoids plays an active way in the determination of the smectic period A, which is
obtained in a consistent way within the approximation, taking into account the
contributions to the free energy from both the repulsive cores and the attractive
interactions. It was shown that the stability of the smectic A phase requires a
sufficiently large elongation of the hard ellipsoids. However, the theory still retains
a certain degree of empirical character in the determination of the reference ellipsoid.
The ratio between the major and the minor axis diameters should reflect the shape
of the molecular hard core and the distribution function of the molecular orientations,
but Mederos & Sullivan (1989) take this ratio as a constant, independent of the
nematic order. The attractive interactions included in the model have also an
empirical form, lacking real correlation with a molecular model. The perturbation
approach of Somoza (1989), for a system with the Gay—Berne interaction potential,
is formulated as a density functional approximation for the free energy, so that it
may be used to study also the smectic-A phase and it would provide a truly
microscopic theory for a well-defined molecular model. The progress was hindered by
the heavy computational requirements, but the approach seems to be in the right
direction for future advances.

(b) Theories of the smectic-C

The smectic-C phase may appear in systems of molecules which broken axial
symmetry. The description of the molecular orientation requires not only the
direction of the main molecular axis a, but also an angle, x, to describe the
orientation of a second molecular axis around the nematic director. Experimental
data suggest that this secondary axis may be associated to the presence of permanent
electric dipoles in a direction different from the main axis. The mean-field theories of
smectic-C are based on the idea that without the broken axial symmetry the system
would be a smectic-A phase and they figure out how the off-axis dipole (or any other
element breaking the axial symmetry) may produce a tilt angle ¢. These theories
(Vertogen & de Jeu 1988), take the form of a Landau theory with ¢ or sin ¢ as order
parameter and the molecular model is used to determine the sign of the coefficients
in the expansion of the free energy in powers of the order parameter.

An important qualitative feature which may be discussed at this level of
theoretical development is the coupling between the tilt angle @ and the presence of
biaxiality in the molecular orientations, i.e. the breaking of the symmetry for the
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distribution function of the angle y, producing the biaxiality with respect to the
nematic director. This coupling is the simplest way to get a theoretical model for the
smectic-C, but the experimental evidence indicates that in real smectic-C liquid
crystals, the biaxiality of the molecular orientations is negligible. This favours
models of molecular interactions, like the interaction between a permanent off-axis
dipole and the induced dipole in a neighbouring molecule (Vertogen & de Jeu 1988),
which may explain this behaviour. Other types of molecular interactions, like the
interaction between permanent electric dipoles and quadrupoles, may also be
responsible for the tilt angle without breaking the symmetry of the distribution
function for y.

Somoza & Tarazona (1988) have applied the density functional approximation (13)
to a model of parallel hard oblique cylinders, showing that the smectic-C phase may
be obtained in a system with hard body molecules. The approach is a truly
microscopic theory, providing the link between the molecular model and the phase
diagram, which has uniaxial and biaxial nematics, smectic-A and smectic-C phases,
depending on the packing fraction and the molecular shape. However, the simplicity
of the model forces some drawbacks: the main molecular axis are assumed perfectly
oriented, so that the nematic order is frozen, and the presence of the tilt angle is only
possible with the breaking of the axial symmetry. This and other related attempts
should be considered as very preliminary steps in the development of microscopic
theories for smectic-C liquid crystals. Other more exotic phases, like the smectic-B,
the columnar or the cubatic phases are even further away from theoretical
understanding.

4. Conclusions

The theory of liquid crystals is now getting beyond the empirical approaches
towards a microscopic understanding of the phase behaviour and the phase
transitions in terms of simplified molecular models. For the simplest case, the
nematic liquid crystal phase, we have made a long way since the seminal works of
Onsager, Maier & Saupe. The theory of hard body nematics is now capable of good
quantitative predictions. This has been possible with the experience gained in the
theory of the hard spheres fluid and with the guide of the computer simulation data
for simple molecular shapes. The way to progress in the understanding of
thermotropic nematics is now open, with the perturbations approaches, as in the
theory of simple liquids. The main difficulty in this project is the need of a good
description of the pair distribution function in the reference (hard bodies) system.
The molecular correlation function in the isotropic liquid should give a very
important correction over the mean field contribution of the attractive interactions
to the free energy. Nearby molecules have a strong tendency to orientate their main
axes parallel to each other, even in absence of long range orientational order. Any
theory neglecting this fact overestimates the stability of the nematic with respect to
the isotropic liquid, in a way similar to what happens with the contribution of the
attractive interactions in the crystallization of a simple fluid.

The theory of smectic liquid crystals has also benefited from the experience with
the hard spheres system. The map into a system of parallel hard ellipsoids, provides
a starting point for the description of the packing effects and for the construction of
microscopic theories for the smectic-A phase, in which the smectic period is obtained
consistently within the density functional formalism, rather than being fixed as an
empirical parameter as in the earlier theories of Kobayashi & McMillan.
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It is now clear that most phases observed in the experimental phase diagrams of
liquid crystals may be obtained in simple models with pure hard body interactions
and also as the result of the coupling between the hard body packing and some kind
of soft attractive interactions. However, different physical origins for the existence
of these phases may produce important differences in their phase behaviour. Only a
theory with quantitative accuracy for simple molecular models, will provide a better
understanding of the relative importance of the hard cores, dispersion forces, electric
dipoles, quadrupoles and flexible tails, in the phase diagram of real liquid crystals.

I am grateful to Andres Somoza, Luis Mederos, Enrique Chacon and Guillermo Navascues for
fruitful comments and discussions. This research was supported by the Direccion General de
Investigacion Cientifica y Tecnica of Spain, under grant number PB91-0090.
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